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15.1. INTRODUCTION

Optical tweezers, first developed by A. Ashkin et al. almost three decades ago,! have
found wide use ~th in biological applications? and in colloid—polymer
applications.>® The technique became truly user friendly when Ashkin and
co-workers demonstrated that it is possible to use a single beam with large gradient
force to form an optical trap (also known as optical tweezers) for colloidal particles.’
A review of optical tweezers applications that covers the development and many
applications published between 1970 and 1995 can be found in an article by Kuo.?
In this chapter we demonstrate an approach that utilizes the phase-sensitive
detection of the dynamic position of a single colloidal particle undergoing a forced
oscillation driven by optical tweezers. By measuring the particle’s position, we can
calculate the dynamic forces on the particle.® This approach differs from that of
conventional applications of optical tweezers where the optical trap is usually
stationary. The advantage of using oscillating optical tweezers is that one can use it to
measure frequency-dependent, dynamic properties of polymer~colloid systems at the
colloidal level. The phase-sensitive lock-in method measures the phase shift and
displacement of the oscillating particle relatve to the oscillating optical tweezers. It
can be shown that phase-sensitive measurements provide a greater sensitivity for
dynamical measurements than most other techniques. Phase-sensitive measurements
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also have an advantage over direct displacement measurements in that they are Jesg
prone to the optical contrast variation that usually occurs in optical IMiCroscopy.

In what follows, we start with a brief description of the principle of optical tweezers
trapping individual colloidal particles. Although there are several approaches to dea]
with the theory of optical trapping of particles, we choose the electrostatic
approximation. It is probably the easiest to understand, and it is sufficient for someone
who wishes to design a similar system.

We then review the equation of motion of a particle in a forced harmonic motion,
For simplicity, we treat the medium as viscoelastic with constant viscosity and
elasticity. Because we can explore high frequencies, the Stokes drag is modified to
include frequency-dependent viscous drag and inertia terms; the latter includes not
only the particle mass but also a part related to the frequency-dependent momentum
transfer to the surrounding liquid. The equation of motion is solved to give the
time-dependent displacement and phase shift of the particle’s motion in the laboratory
reference frame. When the displacement and phase shift are measured relative to the
center of the optical trap, we can use expressions derived for the (moving) optical
tweezers reference frame. _

Following the theoretical treatment, an experimental setup with the necessary
optical components is given. Three modes of detection are described, including direct
imaging, the single-beam forward-scattering method, and the dual-beam
forward-scattering method. The direct-imaging method is a laboratory frame
measurement. It is easy to set up but fails at high frequencies. The forward-scattering
method measures a particle’s motion in the reference frame of the oscillating laser. It
has an excellent high-frequency response but is insensitive at very low frequency. A
dual-beam method, with one laser beam oscillating and the other stationary, measures
a particle’s motion in the laboratory frame and provides good response at both low and
intermediate frequencies.

All three methods of detection are tested against the theoretical treatment. We ran
these tests on individual colloidal particles in water, in water—glycerol mixtures, and
in low-concentration polymer solutions. Most of the results are obtained using
polystyrene latex spheres. Some results are from measurements of
surfactant-stabilized oil droplets in water. The experimental results agree well with
our theoretically calculated predictions.

The theory presented here for solutions with constant viscosity and elasticity can
be extended readily to frequency-dependent viscoelastic polymer—coiloid systems.
One possible application is to study the microviscoelasticity of colloidal particles
embedded in polymer gels.!? Another potential application of this technique is to study
the interactions between a pair of particles, each held by an optical tweezers.

15.2. PRINCIPLE OF OPTICAL TWEEZERS

By strongly focusing a laser beam, a very strong electric field is formed at the focal
point, and a large electric field gradient is formed in both the axial (the laser
propagation direction) and radial directions. A sufficiently steep field gradient can



15.2. PRINCIPLE OF OPTICAL TWEEZERS 387

create a force on a colloidal particle large enough to counter Brownian motion, thus
yielding a stable optical trap in all three dimensions. The balance of gradient and
scattering forces in the axial direction causes the potential minimum for the trapped
particle to be slightly downstream from the focal point of the lens. The achievement
of axial stability, due to the availability of high numerical aperture (NA) objective
lenses, makes the trap suitable for a wider range of applications. The magnitudes of
the forces are generally quoted to be about 1 picoNewton per milliwatt (pN/mW) of
power at the trap site. Because of their relatively noninvasive nature, laser tweezers
are ideal for probing individual colloids and cells in their microscopic environments.

Several theoretical approaches have been proposed to explain the physics of laser
trapping of dielectric particles. The simplest is an electrostatic model, such as the
parallel-plate capacitor model: The potential energy of the system (capacitor plus
dielectric) is lowered when a dielectric material is drawn into the capacitor. Optical
tweezers can be explained in the same manner: Particles of higher (at optical
frequencies) dielectric constant than the surroundings are drawn into the high electric
field provided by the tightly focused laser beam. The fact that the laser electric field
oscillates at high frequency does not matter because, as shown below, the potential
energy of the particle in the field is proportional to the square of the field strength so
that the particle can follow the direct current (DC) component potential whereas the
second harmonic frequency is much too high for particles to follow.

However, the electrostatic model is not complete. The problem is that the electric
field produced by a laser is not electrostatic—rather it is a traveling electromagnetic
(EM) wave. A traveling EM field exerts radiation pressure on the surfaces on which
it impinges. In other words, the laser beam tends to push the particle in the direction
of laser propagation. Trapping stability depends on the competition between the
scattering force in the direction of beam propagation, proportional to intensity, and the
gradient force, proportional to the gradient of intensity. It is known that not only will
lower dielectric constant particles be ejected from the trap, but so will hollow particles
and highly reflective materials.!! For a more precise description, the Mie or Rayleigh
scattering models must be used for particles comparable to, or smaller than, the size
of the optical trap. When a particle is much larger than the size of the trap, a
geometrical optics model should be used to calculate the trapping force.!2

The potential energy of a homogeneous, linear dielectric particle in an electric field
E is given by??

U=>[D Ed% (15.1)

1
2

where D is the electric displacement vector equal to £E, where € is the dielectric
constant at optical frequencies. The difference in potential energy is

AU:U:'U1=71>“J.[D2‘E2‘D1 Eld’
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where U, (U,) is the energy when the particle is inside (outside) the trap. If the sougce
charge density is assumed unchanged, the second integral on the right-hand side of Eq.
(15.2) vanishes, in which case, Eq. (15.2) is reduced to*3

1
sU=3[IeE, - B - e E, - Bl (153)
Assuming harmonic fields, wé have

E=E ™™

D -E'=¢B=¢EP (15.4)

Because we require [EP to be real, the amplitude E_ must be either purely real or purely
imaginary. Thus

El‘E3=E;'Ez

aU=1] (€ -e)E; B, i (15.)

It can be shown that for a dielectric sphere in an external field,"

| 3e E (15.6)
EZ- €2+251 1
And thus,
3g, {3e,—¢
A== 1 R (15.7)
2 [e,2+2£ll'!m1 dx
2

where V. is the volume of the particle. Assuming that the radius of the particle is the
same size as or smaller than the trap spot size, and that the electric field is
approximately uniform over the particle volume, we can rewrite Eq. (15.7):

e

3nle, [ n3—n3
AU=~ ,}8" 2—LIE 2V, (15.8)
m, + 2ny

Fra
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where 7 is the index of refraction, &, is the dielectric permitivity of free space. Here,
we have used € = K &, and K = n2. Thus, when n, > n;, U, < U, and the energy is lower
if the particle is in the trap. For example, at optical frequencies, the index of refraction
for water iS Ny = 1.33, and for polystyrene spheres, n,= 1.57; micron-sized
polystyrene spheres in water can be trapped easily.

Since we will need only to calculate the trapping forces in the radial direction, we
will not discuss the rather complicated calculation of the axial trapping force. All we
need for the present application is a large enough NA objective so that the particle is
stable axially. In what follows, we present an electrostatic argument for the radial
component of the gradient force.

In order to estimate the radial trapping force, we rewrite the potential energy in
terms of the intensity via the time averaged Poynting vector:

I=<S>=l 1 |
e

CEgy
E’=— IE, I?

e Ioe"z/RZ (15.9)

where c is the speed of light in vacuum, |t is the magnetic permeability, and r is the
radial position measured from the center of the trap. A Gaussian intensity profile with
a 1/e width of R at the center of the trap has been assumed for the radial direction, and
the potential energy measured relative to a particle at infinity is

—3V,n -n? (15.10)
U= 21 ’2'% 12 Ioe—rle2
c n +2n

Now the force F can be found for a particle with a radial displacement from the center
of the trap: '

6rvon 2 _n?
F=-VU=- 01:2110(’;2 lz}e-'zfﬂzﬁ
n; +2n

R A (15.11)

= ~r
=—k,re r

For small displacements the force is a Hooke’s law force with spring constant &,
that is, F= k,, r. For a polystyrene sphere (n, = 1.57, radius a = 0.5 pum) in water (n, =
1.33) and assumed power at the trap (R = 0.5 um) of 1 mW the spring constant is
approximately 8 mdyn/cm. At a displacement of 7 ~ 0.25R the force is approximately
1 pN. A comparison of the linear approximation with the force given by Eq. (15.11)
is shown in Figure 15.1. It is calculated that the linear approximation is good to within
4% when the particle is displaced about 0.2 R from the center of the trap or within 10%
when particle is displaced about 0.32 R.
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FIGURE 15.1 Comparison of the Hooke’s law force (linear approximation) with the force given by Eq,
(15.11).

15.3. EQUATION OF MOTION FOR A COLLOIDAL PARTICLE IN
FORCED OSCILLATION IN A VISCOELASTIC MEDIUM

An individual particle in suspension can be forced into an oscillatory motion by
optical tweezers that are steered by a piezoelectric transducer (PZT) controlled mirror.
A single particle of radius a, set in motion (say, along the x axis with velocity v)
experiences the following forces: (1) a springlike force — k, x, exerted by the optical
tweezers; (2) the viscous force —61nav, due to the Stokes drag in solution; and (3) an
elastic restoring force —kx, where & is the effective spring constant of the solution of
viscosity 1. In a viscoelastic medium, both the viscosity and elasticity depend on
frequency; for simplicity, we assume both are constant. However, because we
consider oscillations over a broad oscillation frequency range, we need to include the
frequency-dependent hydrodynamic modification terms to the Stokes drag.'* Figure
15.2 illustrates all the forces experienced by a particle in a viscoelastic medium.
The equation of motion for the particle is

m'% + 61N’ ax + (k,, + k)x = kA cos(wr) (15.12)

where m” is the effective mass of the particle, a is the radius of the colloidal particle,
N’ is the effective viscosity, & is the elastic modulus of the solution, and A is the
amplitude of the tweezers’ oscillation of frequency w. It is important to note that the
effective mass m” includes not only the bare mass of the particle m, but also the inertia
of the liquid around the particle when the particle is set into an oscillating motion.
According to Landau and Lifshitz,'4 the effective mass m" can be expressed as

2n ]
m" =my+ 7 a’p,+3na’ _T'msfg (15.13)
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FIGURE 152 Forces on a single particle set in forced oscillation in a viscoelastic medium.

and the effective viscosity 1} can be expressed as

n‘:ns(l +,‘ /azpz(,)) (15.14)

2n,

where p, and 7, are the solution density and viscosity, respectively. Equation (15.12)
has a steady-state solution:

x(#) = D(w)cos(tx — d(w)) (15.15)

where the amplitude and the phase shift of the response are

k A *
D(@) = o j=tart PO (1516
(ko + k— m'0X)” + m™*B*w ko + k—m'®
where
8= 6m°a (15.17)
mt

' In Figure 15.3a, we show the calculated phase shift versus log(w) for a 1.0-um-
diameter polystyrene particle in water (density = 1 g/cm?®, 11,= 0.01 poise). The spring
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FIGURE 153 (a) Phase shift vs. log() for a 1.0-um diameter polystyrene particle in water (density = 1
g/cm , Tls = 0.01 poise). The spring constant ko is 3 mdynlcm (b) Relative dlsplacemem D/A vs. log(w)
for a 1.0-um polystyrene particle (density 1.05 g/cm ) in water (density = 1 g/cm 1s = 0.01 poise). The
spring constant ko is 3 mdyn/cm.

constant k,, is 3 mdyn/cm. In Figure 15.3b, we show the calculated D/A versus log(w)
in the same system. We can see that for most systems of interest the system is highly
overdamped, and both D(w) and §() vary appreciably over the range 0 < ® < 10*
rad/s. This allows for measurement of the viscoelastic properties of the polymer
solution in the frequency range of 0 < ® < 10* rad/s (shear rate range up to 10° to 109
s-1). It is therefore feasible to determine the spring constant of the trap from the phase
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[8(w)] and displacement [D(w)] measurements made on polystyrene particles in
water, as water is not elastic in our frequency range (<7 kHz) and the viscosity of water
is a known function of temperature.

In the next section, we describe the experimental setup and the procedures to
calibrate the spring constant k,, of the optical tweezers.

154. EXPERIMENTAL SETUP

Here we introduce a setup that allows us to measure the motion of a colloidal particle
undergoing forced oscillation, and we describe the phase lock-in detection technique.
A schematic of the experimental setup for both single-beam and dual-beam optical
tweezers is shown in Figure 15.4. In this diagram, we include all three methods of

Lock-in Amp
t -
- PO2
sSwW
PD1
P
f = DBS
cch | ‘
\ BS osJ BS mumination
] )
PZT telescope
M o ~ - _I
PS M
PBS FG
ND { !
M PDM
HW ND \ PBS M
Laser ,
= - beam M
expandar

FIGURE 15.4 Schematic of the experimental setup of optical tweezers. HW is a half wave plate, ND a
neutral density | 'ter, PBS a polarizing beam splitter, M a mirror, PS a power supply for piezoelectric-driver
(PZT), PDM a pr.zoelectric-driven mirror, FG function genzrater, BS a beam spiitter, DBS a dichroic beam
splitter, which reflects the green laser light and atlows the illuminating light to pass. The OBJ is the high
NA objective lens, PD1 and PD2 are splitted photodiode detectors, P a polarizer and SW a switch to allow
signal from PD1 or PD2 to go to the lock-in amplifier. The sample chamber and the trapped particle, both
ot shown, are located directly to the right of OBJ.
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detection: direct imaging, single-beam forward scattering, and dual-beam forwarg
scattering.

As shown in Figure 15.4, our optical tweezers are built on an Olympus IX-7¢
inverted microscope with an Olympus Plan-Apo 100X (N.A. 0.5-1.35) oil-immersion
objective lens. The laser is a Spectra-Physics Millennia Nd:YVO, laser at a
wavelength of 532 nm (frequency-doubled, maximum power 5.5 W). The laser beam
is steered by a PZT-driven mirror (Physik Instrumente, P830-40). A sinusoidal signal
created by a Stanford Research Systems frequency synthesizer (SRS DS-345) is fed
in a piezoelectric driver (Physik Instrumente, P863) to drive the steering mirror. A
CCD (MTI CCD72) camera is used to generate a video image of the trapped particle
for viewing and optical alignment. The actual measurements of the particle motions
are made on the signal detected by a split photodiode detector (Hamamatsu $4204),
The output electrical current signal from the split photo diode detector is fed into a
lock-in amplifier (SRS 830). The reference signal is taken from the frequency
synthesizer (SRS DS-345) that is used to drive the mirror. The lock-in amplifier
measures the magnitude and the phase shift of the signal from the photodiode detector
relative to that of the driving signals. A beam split from the beam reflected off the
steering mirror can also be detected by a separate photodiode detector for
determination of the frequency dependence of the steering mirror’s displacement and
phase shift. Note that the phase shift described in Eq. (15.16) is the relative phase shift
of the particle motion to the mirror motion. The displacement described in Eq. (15.16)
is the relative motion of the measured particle’s displacement to the laboratory
reference frame. The amplitude A of the motion of the optical tweezers is, to a good
approximation, linearly proportional to the amplitude of the motion of the mirror.

15.5. EXPERIMENTAL RESULTS AND DISCUSSIONS

15.5.1. Direct Imaging Method

" By imaging the trapped particle onto a split photodiode detector (PD1 in Fig. 15.4),
we are actually creating a shadow of the particle in a bright background. When the
particle is set into motion by the oscillating tweezers, the light distribution, with a dark
spot near the center of the split photodiode detector, changes spatially with time. The
lock-in amplifier analyzes the photo currents measured by the split photodiode PD1 and
provides a measure of the magnitude and phase of the particle’s motion. The lock-in
amplification technique suppresses random noises caused by the particle’s Brownian
motion and other sources of noise caused by fluctuation of the bright background.

We tested the direct imaging method by measuring the phase shift of a
1.1-um-diameter polystyrene latex sphere in water, from which we obtained the
measured optical tweezers’ spring constant k.. Using the same spring constant, we are
able to determine the viscosity of dilute polymer solutions in water and to compare
our data with direct viscosity measurements. The polymer used was 100,000 g/mol
polyethyleneoxide (PEO) with both ends capped with a 16-carbon alkyl group
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FIGURE 155 Plot of tan 8 vs. angular frequency @ for C16-100 PEO in water solution.

(C16-100 PEOQ). Figure 15.5 shows a plot of tan 3 versus angular frequency ®. The
linear dependence in the plot is expected from Eq. (15.16). With a known spring
constant, we can determine the solution viscosities of the polymer solutions. Figure
15.6 shows a comparison of the data obtained by this method and that obtained with
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FIGURE 15.6 Comparison of viscosities measured by the optical tweezers and by a capillary viscometer.
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a capillary viscometer; both methods are at shear rates less than 100 s -!, The direct
imaging method works well for low frequencies, but the bright background noise sets
an intrinsic limit on the range of frequency response. High-frequency response can be
accomplished by forward-scattering methods, as shown below.

15.5.2. Forward-Scattering Method

The motion of the trapped particle relative to the optical tweezers affects the
forward-scattering pattern created by the laser. We can use the time variation of the
forward-scattering intensity distribution at a split photodiode (PD2 in Fig. 15.4) to
measure the desired particle motion in the trap.' The concept of the detection is given
in Figure 15.7, where a split photodiode is positioned at the back focal plane (BFP)
of the condenser. As shown in Figure 15.7, the trapped particle can be treated as alens
that collimates the laser beam and projects the forward scattering into a tight spot on
the split photodiode. When the particle is at the center of the optical trap, as shown in
(15.7a), the forward-scattering light is projected to the center of the split photodiode,
yielding a zero photo current. When the particle is away from the center of the trap,
as shown in (15.7b), the forward-scattered light is projected off-center of the
photodiode, yielding a photo current proportional to the displacement of the particle
from the center of the trap.When the trapped particle undergoes oscillation in the
direction perpendicular to the laser beam, the forward-scattering spot executes a
similar motion at the position of the split photodiode. It should be noted, however, that
the signal so obtained is a measure of the motion of the particle relative to the trapping
beam center—a moving reference frame.

objective  condenser

1 1T L
BFP BFP*
—
split
\ photodiods
a) b)

FIGURE 15.7 Working principle of forward-scattering detection method. When the particie is at the
center of the optical trap, as shown in (a), the forward-scattered light is projected to the center of the split
photodiode. When the particle is away from the center of the trap, as shown in (b), the forward-scattered
light is projected off-center of the photodiode.
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FIGURE 15.8 Plot of calculated phase shift in the moving trap reference frame § vs. log (w) fora 1.0-um
polystyrene particle (density 1.05 g/cm3 ) in water (density = 1 ycm3 , Tz = 0.01 poise). The spring constant
kot is 3 mdyn/cm. The curve A is the moving frame phase shift &, the curve B is the first term, and curve C
is the second term on the right side of Eq. (15.20).

The solution given in Eq. (15.16) is for the motion of a particle relative to the
laboratory reference frame. Transformation between the two reference frames is
straightforward. It can be shown that the measured phase shift in the trap frame is
related to the phase shift in the laboratory frame by:

§(@) = tart —TBL_ 4 i MPO (15.18)
mo -k (k+ky)-mo

Note that the second term on the right side of the above equation is exactly the phase
shift in the laboratory frame. Figure 15.8 shows each term in Eq. (15.18) as a functon
of log(). The curve A is the moving frame phase shift &, the curve 8 is the first term
on the right side of the equation, and curve C is the second term.

The measured displacement in the trap frame, normalized to the amplitude of the

trap motion, is

D(@) \/ (m Py + (k- m o) (15.19)

A (mBo) + (k, + k- m @)

Figure 15.9 shows the relative displacement D’(w)/A. both as a tfunction of log(w).
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FIGURE 159 Plot of normalized displacement in the moving trap reference frame D'/A vs. log (w) for
a 1.0-1m polystyrene particie (density 1.05 g/cm®) in water (density = 1 g/cm®, s = 0.01 poise). The spring
constant ke is 3 mdyn/em.

In doing the forward-scattering measurements, we obtain directly the moving
reference frame data for both phase shift 8" and displacement D’/A. To compare
experimental phase shift &’ to Eq. (15.18) we can fit the equation to the data by
iteration, where the spring constant k,, is the only fitting parameter (k = 0 in water).
The data were fit to the phase shift up to 90° (at 400Q rad/s), beyond which the data
were not reliable. An error of a few degree near 90° phase shift can canse large errors
in the fit. We believe the errors are caused by misalignment of the optical tweezers.
Once the parameters are known, one can readily transform the data back to the
laboratory reference frame. Figure 15.10 shows the laboratory frame phase shift 6
versus log(w) for a 1.1-jum diameter polystyrene latex sphere in water at the room
temperature of about 23°C. (At the estimated laser power of less than 1 mW at the
optical trap, we do not expect the trap temperature to be different from the ambient
temperature.) The solid lire is a fit to Eq. (15.18) with a laser power of 15 mW
(reference power) measured just before the laser beam enters the microscope.
Depending on the optical elements inside the microscope, only 2 to 5 % of the
reference power reaches the focal point, where the optical tweezers are located; a
precise percentage of the transmitted power is difficult to determine.

Figure 15.11 shows the trap frame displacement normalized to the amplitude of the
trap motion. The condition of the experiments is the same as that shown in Figure 15.10.
The displacement and phase shift data were taken simultaneously by the lock-in amplifier.

According to Eq. (15.11), the spring constant should be linearly proportional to
the laser power at the optical trap. We carried out a calibration of the spring
constant for 1.1-pm-diameter polystyrene particles and for similar sized
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FIGURE 15.10 Laboratory frame phase shift § vs. log (@) for a 1.1-jtm diameter poiystyrene latex sphere

in water at the room temperature of about 23°C,
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FIGURE 15.11 Trap frame displacement normalized to the amplitude of the trap motion. The condition
of the experiments is the same as that shown in Figure 15.10. The displacement and phase shift data were

taken simuitaneously by the lock-in amplifier,



400  OSCILLATING OPTICAL TWEEZERS

0.020
® polystyrene sphere
0.018 - linear fit for polystyrene sphere
B hexadecane droplet
0.016 4 | — linear fit for hexadecane droplet
0.014
3 0.012
d
€ 0.010
i X
~ 0.008
0.006
------------ ]
00044 e/ e
0.002 3
I
0-000 '.I..l-ller']IllTillllillllll!llllll'[l"'l[lllllllll[llll

0 10 20 30 40 50 60 70 80 90 100 110
Reference Power (mW)

FIGURE 15.12 Plot of the measured spring constant vs. reference laser power. The linear relation
between the spring constant and the laser power is predicted in Eq. 15.11.

surfactant-stabilized (TritonX-100) hexadecane oil droplets, both in pure water. As
shown in Figure 15.12, reasonable linear fits are obtained for both the hard particles
and oil droplets. The solid line in Figure 15.12 is not a best-fit line; instead it is
calculated from Eq. (15.11) with all the known parameters for polystyrene particle,
and with an assumption thata = R.

The dashed line in Figure 15.12 is a best fit to the oil droplet data. To calculate the
spring constant for oil droplets in the trap is more difficult. The main difficulty is that
the Stokes drag coefficient of the oil droplet may depend on the effects of surfactant
molecules on the oil-water interface. The results shown here are based on the drag
coefficient of a moving liquid particle in another liquid, with the assumption that the
Marangoni effect is negligible. The drag coefficient is given by!'$

1 +(3n../2
1+ Gngi/2n,) n,)] V. (15.20)

F, =4
ang ma{ 1+ M/,

where 1 ; (= 3.032 cp) is the viscosity of the oil droplet and V., is the fluid velocity
far from the droplet.
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FIGURE 15.13 Measured spring constant vs. refractive index mismatch factor at a constant reference
laser power of 15 mW. The data shown are for samples of weight percent of glycerol in water of 0, 5, 10,
20, 40 and 60. Because the refractive index of the glycerol (1.474) is higher than that of water, the highest
glycerol content sample gives the lowest spring constant.

According to Eq. (15.11) the spring constant k, should be linearly proportional to
the refractive index mismatch between the particle and the solution, that is,

R
ot™ T n§+§?1 (15.21)

We carried out experiments in mixtures of water and glycerol to test this relationship.
We chose water—glycerol mixtures because they cover a broad range of viscosity and
a broad range in the refractive index mismatch. We took the viscosity of
water—glycerol from the values given in the CRC Handbook of Chemistry and
Physics"" and calculated the refractive index mismatch by linear superposition of the
refractive indices of water and glycerol according to the mass of each components.
Figure 15.13 shows an excellent linear relationship between the measured spring
constant k,, and the calculated values of the refractive index mismatch, as is predicted

in Eq. (15.21).
15.5.3. Forward-Scattering Method with Two Laser Beams

It is possible to measure the phase shift in the laboratory frame and still obtain
broad frequency response by a forward-scatiering method. This requires two laser
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beams aligned colinearly at the optical trap. The first laser beam, linearly polarized,
forms the stationary optical tweezers. The second laser beam, also linearly
polarized but in a direction perpendicular to the first beam, forms the oscillating
optical tweezers. Both optical tweezers act on the trapped particle and affect the
motion of the particle. We let only the stationary laser beam reach the split
photodiode detector by placing a polarizer between the optical tweezers and the
detector to block the oscillating beam. The equation of motion for the particle is
similar to that of Eq. (15.12), except that the effective spring constant k, on the
left-hand side of the equation is replaced by the combined effective spring constant
(ko + ko). With this approach, a reasonable response at high frequencies can still be
achieved.

Figure 15.14 shows the data obtained by the two methods. In the dual-beam
measurements the probe beam, forming the stationary optical trap, is more than an
order of magnitude weaker in power than the oscillating beam. The oscillating beam
here is at the same reference power as the single-beam experiments, thus we expect
the spring constants measured by the two methods should be comparable. Indeed, as
shown in Figure 15.14, the two sets of data gave a similar spring constant. Both sets
of data in the figure are plotted (corrected) in the laboratory frame. The k,, for the
single-beam (trap frame) method is 4.130 mdyn/cm whereas the k,, for the dual beam
(laboratory frame) is 4.167 mdyn/cm. The major deviation of the data from best-fit
lines that occurs at 60 Hz (27 - 60 rad/s) is caused by the phase shift of the line
frequency notch filter in the lock-in amplifier.
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FIGURE 15.14 Comparison of the single laser beam and dual laser beam methods for measurement of
the spring constant for a 1.1-um polystyrene sphere in water at 23 °C and at 15 mW reference laser power
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15.6.1. Microviscoelasticity

The equation of motion developed in Section 15.3 assumes constant solvent viscosity
and elasticity. However, theory presented there can be readily extended so that the
frequency-dependent microviscoelastic properties of polymer gels can be
investigated. In this case, the solvent viscosity 1, and the medium elasticity k should
be replaced by corresponding frequency-dependent functions. One can easily relate
the frequency-dependent viscosity and elasticity to the storage and loss moduli G'(w)
and G"(w). In general, one will need to measure both the phase and displacement
response function to solve for G'(w) and G"(w).

Although the theory for macroscopic viscoelastic properties of associative polymer
solutions is well established,'®! relatively little is known of the role of the adsorption
of these polymers in the presence of the colloids to the rheological properties of the
solution. In particular, the contrast between the case that polymers strongly adsorb and
the cases that the polymers weakly adsorb or do not adsorb to the particles.?? We
suspect that the microviscoelasticity, the viscoelasticity measured within nanometer
range of the particle surface, will be very different for each of the above cases. Thus,
probing microviscoelasticity can provide valuable insight to the polymer—colloid
interactions at the microscopic level, a key to a better understanding of the overall
polymer—colloid solution rheology.?

15.6.2. Colloidal Forces Between T'wo Particles

The oscillating optical tweezers technique can also be used for probing dynamic
interactions between two polymer-coated colloidal particles. In this case, the force on
one of the particles is measured when a second particle, held by a separate optical
tweezers, approaches.?

The most straightforward application might be probing hydrodynamic interactions
between a pair of colloidal spheres. Theories for calculation of hydrodynamic
interactions have been developed for decades,=2* however, few direct measurements
of these interactions exist.” Hydrodynamic interactions occur when two particles
move relative to each other. These motions are either from Brownian motion or from
the forced oscillation discussed in this chapter. One ongoing experiment in our
laboratory is to measure the Stokes drag of one oscillating particle as a second particle
is approaching. The hydrodynamic force between particles moving in the longitudinal
or shear directions is measured as a function of interparticle distance. Results of this
study will be published elsewhere.

The applications to the two-particle interactions can be further extended for
particles coated with polymers. Problems such as compression or shear forces between
polymer brushes, “* or bridging of polymers between two colloids?*° are just some
possibilities of this kind of applications.
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15.7. CONCLUSION

In this chapter, we demonstrate that it is possible to construct oscillating optical
tweezers for dynamical measurements of forces on a single colloidal particle. The
theoretical treatment includes the basic principle of optical tweezers and the solutions
for the equations of motion of a particle driven into harmonic oscillation for both the
laboratory reference frame and the optical trap reference frame.

A working experimental setup is provided to carry out tests using all three methods
of detection: the imaging method, the single-beam forward-scattering method, and the
dual-beam forward-scattering method. The imaging method gives reasonable results
but suffers from limited frequency response. The single-beam forward-scattering
method yields the best frequency response up to about 1 kHz, beyond which the results
are found to be unreliable. We believe the errors at high frequencies are caused by
misalignment of the optical tweezers. A phase error of a couple of degrees near the
90° phase shift can cause a large error in the data fitting. The dual-beam
forward-scattering method compares well with the single-beam method and yields
better data at low frequencies but cannot quite match the latter at the high frequencies.

Comparisons between experiments and theory are made for both solid polystyrene
latex particles and for surfactant-stabilized hexadecane oil droplets. Water, dilute
polymer in water solutions, and water—glycerol mixtures are used as solution media.
Good agreements are made between the experiments and theory. Potential
applications for microviscoelastic force measurements and possibilities to extend the
applications of this technique to two-particle interactions are briefly mentioned.
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